10.0

CADENCE Tools

Lecture bases on CADENCE Design Tools Tutorial

http://vlsi.wpi.edu/cds
CADENCE Tools for IC Design

The tool depends on the hierarchy level of your design.

Which tools we exactly need?

Composer -> Schematic editor
Virtuoso -> Layout editor
Analog Artist -> preparing simulation (SpectreS in this tutorial)
DIVA -> Design Rule Check (DRC), Layout Versus Schematic Check (LVS), Extraction
Design flow

START

- Design Specification
 - Schematic Capture
 - Create Symbol
 - Simulation
 - Layout
 - DRC - Design Rule Check
 - Extraction
 - LVS Layout versus Schematic Check
 - Post _ Layout Simulation

FINISH
Design Specifications

START

- Functionality of the designed block
- Technology
- Propagation delay
- Transition times
- Circuit area
- Dynamic power dissipation
- Ect.
The traditional method for capturing (i.e. describing) your transistor-level or gate-level design is via the schematic editor.

Schematic editors provide simple, intuitive means to draw, to place and to connect individual components that make up your design.

The resulting schematic drawing must describe the main electrical properties of all components and their interconnections.
Open a new schematic window

Be sure that you have the Library Manager open.

1. Click File on the menu banner in the Library Manager and hold the left mouse button until you choose New and then Cellview.

2. A small new window called "Create New File" appears
Open a new schematic window

There are four main fields in the Create New File window:

- **Library Name**
 Choose your working directory and library name

- **Cell Name**
 Enter the name of your cell for which you will draw the schematic.
Open a new schematic window

View Name
Indicates the level of the design hierarchy. The correct view name choice is "schematic" for our example.

Click OK to finish
Add components

The first thing to do is to add and place components which will be used in the schematic.

We need the components as follows:

- PMOS: p-type MOSFET
- NMOS: n-type MOSFET
- VDD: Power supply voltage
- GND: Ground line

To add components, click on Add in the menu banner of the schematic entry window and choose Component.
Add components

• Add Component Window
 Enter the Library Name, Cell Name and the View Name of the component

• Component Browser
 enables the designer to browse easily through the available libraries and select the desired components.
Add components

Pick up the MOS transistors from the Component Browser window.

• Open the "N_Transistors" folder by clicking once on it.

• Pick up the NMOS transistor by clicking once on "nmos", which is a model for a three terminal n-type MOSFET.
Add components

- Click on a location in the schematic window, where you want to put the transistor.
- Use the same procedure to select and to place the PMOS transistor.

Picking up the supply voltage components involves the same steps as in adding transistors to the schematic.
To connect the components in a schematic, we use wires by choosing **Add** and then **Wire (narrow)** on the menu banner.
Connecting any two nets in the schematic is done by first clicking at one of the nets and then at the other one.

Press ESC key to leave the wiring mode.
Edit properties of components

<= 1. Select component by clicking on it

2. Choose Properties => and then Object from the Edit menu.
3. Edit the properties => by clicking on the corresponding field. You may change the values for Width or Length depending on your design specifications.
4. Click OK after editing the properties in the *Edit Object Properties Window.*

The most important parameters always appear in the schematic window.
Placing the pins

You must place I/O pins in your schematic to identify the inputs and the outputs.

1. Click *Add* on the **=>** menu and then select *Pin* on the pull-down menu.
2. Enter the name of your pins in the *Pin Names* field. Choose the direction.

Place pins by clicking on a location in the schematic window.
Placing the pins

Connect the pins to the corresponding nodes using wires.

The wiring procedure is the same as described in the previous steps.
Click **Design** on the menu banner => and then select **Check and Save**.

<= Check the message field every time you save a design.
Creating cellview

START

If a certain circuit design consists of smaller hierarchical components (or modules), it is usually very beneficial to identify such modules early in the design process and to assign each such module a corresponding symbol (or icon) to represent that circuit module.
Creating cellview

From the Design menu, select Create Cellview and then From => Cellview

<= Check the view names You have to ensure that the target view name is symbol.
Locating the pins

After clicking OK in the Cellview From window, the following window pops up:

Edit your pin attributes and locations. In the default case, you will have your
• input(s) on the left of the symbol
• output(s) on the right of the symbol.

Change pin locations by putting the pin name in the corresponding pin location field.
Editing the shape of the symbol icon

In the new window, the automatically generated symbol is shown.
Editing the shape of the symbol icon

You can do the following operations on your symbol

• Deleting/replacing some existing parts
• Adding new geometric shapes
• Changing the locations for pins and instance name
• Adding new labels
• **Save** - doesn’t check anything.

• **Checking** a symbol means comparing the symbol view with the corresponding schematic view, by matching all of the pin names.

To check and save the symbol, choose **Check and Save** from the **Design menu**.
• The electrical performance and the functionality of the circuit must be verified using a Simulation tool.

• Based on simulation results, the designer usually modifies some of the device properties.
1. Open a new schematic.

• Follow the same procedure described in “Open a new schematic” to create a new schematic where you will put your simulation schematic for the inverter.

• Give a name to your new schematic which makes it clear that the new schematic is to *simulate* the inverter.

• **Note**: You should first create the *symbol* of the circuit schematic which you want to simulate.
The first step is to add and to place the components which will be used to simulate the inverter.

The components we need for the simulation of the inverter are the following:

• Inverter - Symbol created for the inverter
• VDD - Power supply voltage
• GND - Ground line
• vdc - DC voltage source
• vpulse - Pulse waveform generator
• C - Capacitor
How to pick up a *symbol* from library, and to place it in the schematic?

<= To pick up the inverter symbol, change the library of the *Component Browser* to library, "tutorial".
Simulation - Select and place components

After the library "tutorial" is selected, there will be a new list of:

- components which are included in this library
- every symbol that you created within this library will show up here.

By clicking on "inverter" in the component list in the Component Browser, you can pick up the symbol you created for the inverter.
You can go to the schematic window and place the symbol of the inverter to a point by clicking on it.
Simulation - Select and place components

Pick up and place the rest of the components required for the simulation.

• Place the supply nets, "vdd" and "gnd".

• Place the voltage sources, "vdc" and "vpulse".

• Place the capacitance which will be the output load, "cap".

Match placed components as was showed on the picture. Use the same method as previously.
Simulation - Define the voltage source

A DC-voltage source called "vdd" is required as the power supply voltage in all digital circuits.

The value of this voltage usually depends on the technology used.

Edit the DC voltage field in the Edit Object Properties window and type the VDD value which is 3.3V
Simulation - Define the voltage source Vpulse

- The pulse generator is a voltage source which can produce pulses of any duration, period and voltage levels.
- This source will be used to generate the input data.
Simulation - Define the voltage source Vpulse

The values for the pulse generator parameters which are used to define the input waveform.

Change them using the method as previously.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library Name</td>
<td>NCSU_Analog_Parts</td>
<td></td>
</tr>
<tr>
<td>Cell Name</td>
<td>Vpulse</td>
<td></td>
</tr>
<tr>
<td>View Name</td>
<td>symbol</td>
<td></td>
</tr>
<tr>
<td>Instance Name</td>
<td>V1</td>
<td></td>
</tr>
<tr>
<td>User Property</td>
<td>Master Value</td>
<td>Local Value</td>
</tr>
<tr>
<td>Vignore</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>CDF Parameter</td>
<td>Value</td>
<td>Display</td>
</tr>
<tr>
<td>AC magnitude</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>AC phase</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Voltage 1</td>
<td>0.3 (V)</td>
<td></td>
</tr>
<tr>
<td>Voltage 2</td>
<td>3.3 (V)</td>
<td></td>
</tr>
<tr>
<td>Delay time</td>
<td>3n s</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>100p s</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>100p s</td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>5n s</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>12n s</td>
<td></td>
</tr>
</tbody>
</table>

W.Kucewicz VLSICircuit Design
Simulation - Define the voltage source - results
Simulation - Determine the output load

Edit the properties of the capacitor which is the output load of the inverter.

Change capacitance => from the default value (1 pF) to 25 fF
Simulation - Adding labels

- labeling a node = adding names to the wires.
- it allow to observe important nodes (or wires) during simulations.
- adding pins (during drawing the schematic) ≠ labeling a node

How can I do it?

First, select *Wire Name* in the *Add* command list. ⇒
Simulation – Adding labels

• type all the label names one after the other in the \textit{Names} field

• there isn't any information related to the direction of the nodes - only the pins are defined with a direction.

We will label the two wires as "in" and "out".
Simulation - Adding labels

- After all the labels are typed, move the mouse cursor on the schematic.
- You will see the first label floating with the mouse cursor. Click on the corresponding net to name the net with this label.
- As soon as you put the first label, the second label will appear on the mouse cursor.
- This procedure is repeated until you are finished putting all label names you entered in the Add Label window.
Note: Save your design by using **Check and Save** in the **Design** command list. Be sure that the CIW doesn't report any errors or any warnings.
Simulation - Open the simulator window

<= Open the Analog Artist window.

Analog Artist Simulation (2)

Status: Ready

Session Setup Analyses Variables Outputs Simulation Results Tools Help

Design Analyses

Library tutorial
Cell invTest
View schematic

Design Variables Outputs

Name Value # Name/Signal/Expr Value Plot Save March
• there are many available analysis options you can choose.

• each of these options provides a specific sub-region within the Choosing Analysis window.

We want to obtain the delay information for the inverter, we choose the transient simulation type, so that the output can be traced in time domain.
In the *Transient Analysis* region, type a value in the *Stop Time* field to determine how long the simulation will take place.
Simulation - Run the Simulation

• click on Outputs in the Analog Artist Simulation menu banner

• select To Be Plotted and then Select on Schematic.

• when the schematic window becomes automatically active, select the nodes to be observed
Start the simulation by clicking **Simulation** and then selecting **Run**.
Simulation - Run the Simulation

The waveform window appears after the simulation is completed.
Simulation - Run the Simulation

To separate the waveforms, from the menu Axes select option To Strip.
Simulation - Re-run the Simulation

If you are not satisfied with the simulation results, there are two different aspects that can be modified:

• The simulation environment is not satisfactory.
 This means that the setup to simulate your design should be modified. Make sure that the power supply voltages are connected properly.

• You have to modify your circuit design.
 Usually, you will need to change the W/L ratios of the transistors to meet your design specifications.
How to re-run the simulation after editing?

Go back to the schematic window and select the symbol of your design.
Click on Design in the menu banner, select Hierarchy and then Descend Edit.

Click on OK in the Descend window which asks the designer which view of the design is to be edited.

The existing schematic window now displays the schematic view for the inverter, by going one level down through the design hierarchy.
Simulation - Re-run the Simulation

- Make the appropriate changes in the editable schematic of the design. To change the existing W/L ratio for a specific transistor, you have to edit its object properties.

- Check and save your new schematic.

- Click on Design in the menu banner, select Hierarchy and then Return.
Simulation - Re-run the Simulation

Go to the **Analog Artist** window and run the simulation again.

• As the simulation runs, you can switch to the waveform window, because the waveforms will be updated after the simulation is finished.

• You can iterate on your design as described in this section of the tutorial.

• When you want to end the simulation, quit the **Analog Artist** simulator. This will automatically close the **Waveform** window, too.
The mask layout is one of the most important steps in the full-custom (bottom-up) design flow.

- It describes the detailed geometries and the relative positioning of each mask layer to be used in actual fabrication.

- Physical layout design is very tightly linked to overall circuit performance.

- The detailed mask layout of logic gates requires a very intensive and time-consuming design effort.
Design Idea

To draw the mask layout of a circuit, two main items are necessary at the beginning:

1. A circuit schematic
2. A signal flow diagram
The layout is drawn according to the schematic (and not the other way around).

While both schematics are identical, the one on the right is drawn in a way to resemble the final layout.
The most important factor determining the actual layout is the signal flow.

The signal flow diagram is just a concept that you can visualize for a particular circuit.
Create Layout Cellview

1. From the Library Manager:
 File --> New --> Cellview

2. Enter cellname and choose layout cellview
Virtuoso and LSW

Two design windows will pop-up after you have entered the design name.
Drawing the N-Diffusion (Active)

1. Select *nactive* layer from the LSW

2. From the *Create* menu in Virtuoso select Rectangle
 (Create --> Rectangle)
3. Draw the box
Select the first corner of rectangle in the layout window, click once, and then move the mouse cursor to the opposite corner.

• A grid of half a lambda is used
The Gate Poly

1. Select poly layer from the LSW

2. From the menu Misc choose Ruler (Misc --> Ruler)

! The ruler is a very handy function.
3. Draw poly rectangle

Design rules tell us that poly must extend at least by 0.6μ (2 Lambda) from edge of diffusion
Making Active Contacts

Contacts will provide access to the drain and source regions of the NMOS transistor.

1. Select the ca (Active Contact) layer from the LSW.
2. Use the ruler to pinpoint a location 0.30u from the edges of diffusion.

3. Create a square with a width and height of 0.6u within the active area.
Making Active Contacts

4. From the Edit menu choose Copy
(Edit --> Copy)

• You could choose to draw the second contact the same way as you have drawn the first one.

• However, copying existing features is also a viable alternative.
Making Active Contacts

When the *Snap Mode* is in *orthogonal* setting the copied objects will move only along one axis.

Copy dialog box.
5. Copy the contact

- Select the object (click in the contact - the outline of contact will attach to your cursor).
- Move the object and click at the final location.
Covering Contacts with Metal-1

- Active contacts define holes in the oxide (connection terminals).

- The actual connection to the corresponding diffusion region is made by the Metal layer.
1. Select layer *Metal-1* from the LSW

2. Draw two rectangles 1.2u wide to cover the contacts

Note that *Metal-1* has to extend over the contact in all directions by at least 0.3 u (1 lambda).
The N-Select Layer

Each diffusion area of each transistor must be selected as being of n-type or p-type.

1. Select \textit{nselect} layer from the LSW.
2. Draw a rectangle extending over the active area by 0.6\mu (2 lambda) in all directions.

This is it! Our first transistor is finished, now let us make a few million more of the same :-)

W. Kucewicz
VLSI Circuit Design
Drawing the P-Diffusion (Active)

The basic steps involved in drawing the PMOS are the same.

1. Select *pactive* layer from the LSW

2. Draw a rectangle $3.6\mu\text{m} \times 1.2\mu\text{m}$

Note that the PMOS transistor will also be surrounded by the N-well region.
These three steps are identical to the ones done for the NMOS.

1. Draw the gate poly
2. Place the contacts
3. Cover contacts with Metal-1
The P-Select Layer

The p-type doping (implantation) window over the active area must be defined using the n-pselect layer.

1. Select `pselect` layer from the LSW
The P-Select Layer

2. Draw a rectangle that extends over the active area by 0.6\(\mu\) (2 lambda) in all directions.
Note that the drawing sequence of different layers in a mask layout is completely arbitrary, it does not have to follow the actual fabrication sequence.

1. Select the \textit{nwell} layer from the LSW
2. Draw a large n-well rectangle extending over the P-Diffusion.

The n-well must extend over the PMOS active area by a large margin, at least 1.8μm.
Based on our original signal flow diagram, it is more desirable to place the PMOS transistor directly on top of the NMOS transistor - for a more compact layout.
Placing the PMOS and NMOS transistors

1. Select the PMOS transistor
Placing the PMOS and NMOS transistors

2. From the menu Edit select the option Move

A window will pop-up:

We have to change the Snap Mode option to Anyangle so that we can move the transistor freely.
Placing the PMOS and NMOS transistors

3. The reference point Pick

After we have picked the reference point, the outline of the shape will appear attached to the cursor and we will be able to move the shape around.
Placing the PMOS and NMOS transistors

4. Place the transistor
Connecting the Output

1. Draw a Metal-1 rectangle between NMOS and PMOS drain region contacts

- The minimum Metal-1 width is 0.9u (3 lambda), thus narrower than the Metal-1 covering the contacts.
- The transistors are completely symmetric, the source and drain regions are interchangeable.
Connecting the Input

Connect the gates of both transistors to form the input.

1. Select poly layer from the LSW
Connecting the Input

2. From the Create menu select Path

The path options box will pop up:

In the path mode you can draw lines with the selected layer. The width of the drawn line can be adjusted, the default is the minimum width of the selected layer.
Connecting the Input

3. Start path

- Click on the middle of the PMOS poly extension a ghost line appear

- Move this ghost line to the NMOS poly extension.
Connecting the Input

4. Double click to finish path

A single click will finish a line segment and let you continue drawing, a double click will finish the path.
Making a Metal-1 Connection for the Input

Now we have to make a connection from the poly layer to the Metal-1 layer.

This connection can be done:

• manually by drawing a poly contact layer between Metal-1 and poly,

• using the path command to automatically add the contacts.
Making a Metal-1 Connection for the Input

1. Starting from the poly line connecting the gates, start drawing a horizontal poly path.

2. On the Path Options dialog box, click on Change To Layer and switch to Metal1.
Making a Metal-1 Connection for the Input

This will automatically add a contact to the end of the current path.
3. Finish the path (by double clicking)

SHIFT-F to see all levels of hierarchy.

CTRL-F to see a single layer of hierarchy.
Power Rails

Our Signal Flow Graph suggests horizontal power and ground lines in Metal-1.

1. Draw the Power Rail in Metal-1 above the PMOS

2. Draw the Ground Rail in Metal-1 below the NMOS
The substrate on which the transistors are built must be properly biased.

1. Draw a P-select square next to the NMOS transistor.

2. Draw a P-active square inside the P-select area.
3. Draw the active contact square inside the p-type active area.

4. Make a metal connection to ground, covering the entire substrate contact.
The PMOS transistor was placed within the n-well, which has to be biased with the VDD potential.

1. From the menu Create select option *Instance*
N-Substrate Contact

The instance options menu will pop-up:

Provide:

• a cell name
• library
Choose the library, cell and cell view.

Your selection will be transferred to the Instance options menu.
2. Move the instance to the desired location.

3. Place the instance.

The n-well in this example is not wide enough to accommodate both the PMOS transistor and n-well contact, which will obviously generate a rule violation. This will have to be dealt with in the next step.
4. Make the power connection.
Enclosing the substrate contact

Enlarge the n-well, so that it also covers the substrate contact.

- draw an adjoining rectangle using the n-well layer
- modify the existing rectangle

1. Press F4 on the keyboard to toggle selection mode.

The information bar will start displaying "(P) Select" (P for partial) instead of "(F) Select" (F for Full).
Enclosing the substrate contact

2. Move cursor over the left edge of the n-well.

3. Click once to select the edge.

4. Move mouse over the selected edge (without pressing any mouse buttons).

Cursor changes shape when you are close to the edge.
Enclosing the substrate contact

5. Press and hold left mouse button when cursor changes above the selected edge.
The created mask layout must conform to a complex set of design rules, in order to ensure a lower probability of fabrication defects.

A tool built into the Layout Editor, called Design Rule Checker, is used to detect any design rule violations during and after the mask layout design.
1. From the menu Verify select option DRC

This will pop-up the DRC options dialog box:
Design Rule Checking

2. Start DRC

DRC results and progress will be displayed in the CIW.
Design Rule Checking

The errors are highlighted on the layout.
This is the completed layout of the CMOS inverter.
Circuit Extraction

- The mask layout only contains physical data. (In fact it just contains coordinates of rectangles drawn in different layers).

- The extraction process identifies the devices and generates a netlist associated with the layout.
Extracting from the Layout

Before extraction make sure that the design does not contain any DRC errors.

1. From the Verify menu select the option Extract
To enable the extraction of parasitic devices, a selection parameter called a switch has to be specified.
Extracting from the Layout

The list of switches

- Convert_[np]active_to_active
- Convert_active_to_[np]active
- Extract_caps
- Extract_diodes
- Extract_parasitic_caps
- Create_pselect_around_pactive
- No_parameters
- Create_nselect_around_nactive
Extracting from the Layout

Check the Command Interpreter Window (the main window when you start Cadence) for errors after extraction.

Following a successful extraction you will see a new cell view called extracted for your cell in the library manager.
The Extracted Cell View

A new cellview (called extracted) is generated in your library.
Load the cellview.

Notice that only the I/O pins appear as solid blocks and all other shapes appear as outlines.
The Extracted Cell View

The red rectangles indicate that there are a number of instances within this hierarchy.

Press Shift-F to see all of the hierarchy.
Notice a number of elements, mainly capacitors. They are parasitic capacitances.
Layout versus Schematic Check

- Compares the original network with the one extracted from the mask layout
- Proves that the two networks are indeed equivalent
- Provides an additional level of confidence for the integrity of the design
- Ensures that the mask layout is a correct realization of the intended circuit topology
Layout versus Schematic Check

1. From the Verify menu select the option LVS.

If you had previously run a LVS check, this would pop-up a small warning box. Make sure that the option Form Contents is selected in this box.
Although there are a number of options for LVS, the default options will be enough for basic operations, select \textit{Run} to start the comparison.
Even for a very small design the LVS run can take some time (minutes).

The succeeded message box

The above message box, indicates that the LVS program has finished comparing the netlists, **NOT THAT THE CIRCUITS MATCH**. It might be the case that the LVS was successful in comparing the netlists and came up with the result that both circuits were different.
To see the actual result of an LVS run you have to examine the output of the LVS run. The *Output* option is right next to the *Run* command.

<table>
<thead>
<tr>
<th>Terminal correspondence points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gnd!</td>
</tr>
<tr>
<td>2 in</td>
</tr>
<tr>
<td>3 out</td>
</tr>
<tr>
<td>4 vdd!</td>
</tr>
</tbody>
</table>

The net-lists match.

<table>
<thead>
<tr>
<th></th>
<th>layout</th>
<th>schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-matched</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>wired</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pruned</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>active</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Post-layout Simulation

- Extraction
- LVS Layout versus Schematic Check
- Post/layout Simulation

Steps of Postlayout Simulation
- Extracting from the Layout
- The Extracted Cell View
- Layout Versus Schematic
- Summary of the Cell Views
- Simulating the Extracted Cell View

(First three described earlier)

FINISH
Summary of the Cell Views

1. Schematic view

For any design, the schematic should be the first cell view to be created. The schematic will be the basic reference of your circuit.
2. Symbol view

After you are done with the schematic, you will need to simulate your design. The proper way of doing this is to create a separate test schematic and include your circuit as a block. Therefore you will need to create a symbol.
Summary of the Cell Views

3. Layout view

This is the actual layout mask data that will be fabricated.
After the layout has been finalized, it is extracted, devices and parasitic elements are identified and a netlist is formed.
Summary of the Cell Views

5. Test Schematic

A separate cell is used to as a test bench. This test bench includes sources, loads and the circuit to be tested. The test cell usually consists of a single schematic only.
Simulating the Extracted Cell View

Make sure that you are in the test schematic, that you used to simulate your design earlier.

1. Start Analog Artist using Tools --> Analog Artist

The Analog Artist window will pop-up.
2. From the *Setup* menu choose the *Environment* option.

A new dialog box controlling various parameters of Analog Artist will pop-up...
Simulating the Extracted Cell View

Alter the line called the Switch View List.

This entry is an ordered list of cell views that contain information that can be simulated.
3. Choose analyses

For example DC analysis

The first step is to determine what parameter will be swept.
Choose **Component Parameter** as the Sweep Variable.

You can select the parameter from the schematic window after you click on **Select Component...**
As each component has a number of parameters, you will be given a list of parameters associated with the component you select.
After we have selected the variable we can decide, the range where the variable will change.

This example changes the DC voltage source connected to the input from 0 Volts to 3.3 Volts.
The last parameter determines how the sweep will be performed. A linear sweep will increment the value of the sweep variable by a fixed amount.

The example uses a step size of 10 millivolts.
Simulating the Extracted Cell View

Choose another analyses

For example tran, noise etc. till you will be satisfied of your circuit.

End of Design
SEND to FOUNDRY