Search for high-mass resonances decaying to leptons or photons

M. Mozer
IIHE Vrije Universiteit Brussel

DIS 2008
Heavy Resonances

Come from:

- Extra dimensions
- Extended gauge groups
- Technicolor
- Unthought of theories

Go to:

- Leptons
 - e
 - μ
 - τ
- Bosons
 - γ
 - W/Z
- Quarks
 - Top
 - B-tag
 - Jets
- Exotics
Heavy Resonances

Come from:

- Extra dimensions
- Extended gauge groups
- Technicolor
- Unthought of theories

Go to:

- Leptons
 - e
 - μ
 - τ
- Bosons
 - γ
 - W/Z
- Quarks
 - Top
 - B-tag
 - Jets
- Exotics
Heavy Resonances

Come from:

- Extra dimensions
- Extended gauge groups
- Technicolor
- Unthought of theories

Go to:

- Leptons
 - e
 - μ
 - τ
- Bosons
 - γ
 - W/Z
- Quarks
 - Top
 - B-tag
 - Jets
- Exotics

Simple final states

Good for early searches
CDF di-electron search:

- Events found up to ~500 GeV, compatible with SM
- => exclusion limit ≤ 900 GeV
- Similar results for other lepton/photon channels
- Similar results from DØ
Analysis

1) Identify particles
2) Reject background
3) Compute invariant mass
4) Discovery?
Analysis

1) Identify particles
2) Reject background
3) Compute invariant mass
4) Discovery ?

Background cross section high -> little mis-id large problem

charge id at high \(p_t \) (straight tracks)

M. Mozer (VUB) DIS 2008
Use isolation (in cone around lepton):

- No (additional) tracks
- No extra Calo deposits

1) Identify particles
2) Reject background
3) Compute invariant mass
4) Discovery?
Analysis

1) Identify particles
2) Reject background
3) Compute invariant mass
4) Discovery?

Definition of Significance?
=> need to fix method

4) Discovery?
Backgrounds

<table>
<thead>
<tr>
<th>e</th>
<th>γ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>reducible</td>
<td>QCD dijets</td>
<td>QCD dijets</td>
</tr>
<tr>
<td>W+jets</td>
<td>γ+jets</td>
<td>W+jets</td>
</tr>
<tr>
<td>top</td>
<td>top</td>
<td>top</td>
</tr>
<tr>
<td>DY</td>
<td>QED</td>
<td>DY</td>
</tr>
</tbody>
</table>
Example μ

CMS PAS SBM_07_002

- Background from DY and sources with one real μ
- Danger: MC may not represent reality
 - Efficiencies
 - Background
Example μ

- Include realistic conditions
- Alignment/Calibration
- Determine efficiencies from data (tag & probe)
- Find background from data themselves ($tt\rightarrow e\mu$)

- Good potential even at low luminosities
Possible with few events

- Mass
- (relative) branching ratios
- Spin
- Cross section
- A_{FB}
- Width

Model sensitive i.e. $Z'\#\#\gamma\gamma$

From angular distribution graviton vs gauge boson

Depends on absolute lumi measurement, efficiency

Dilution from unknown quark direction

Limited by detector resolution

Large statistics
• Focused on long term prospects
• Wide range of physics studied
 • Angular distributions
 • Interference structure
 • Width
• Good prospects for discrimination at high lumi

Z' \chi (1.5\text{TeV})
100 \text{ fb}^{-1}

\chi^2 / \text{ndf} = 3.68 / 4
Prob = 0.4511
Afb = -0.1444 \pm 0.0246

ATL-PHYS-PUB 2005-010

M. Mozer (VUB) DIS 2008
Summary

- Excellent prospects for heavy resonance searches at the LHC
- Early discovery possible even at low lumi
- Lots of interesting physics to be extracted from larger lumi
To Do

1. Take data
2. Find Signal
3. Party!