Motivation

- How to look for NP in view of hierarchy problem
 - High mass (~TeV)
 - Not seen in EWK precision tests
 - Coupling to massive SM particles (W,Z,t)

\[X \rightarrow VV \]

- Experimental advantages:
 - W/Z with well known mass → suppress backgrounds
 - Good kinematic reconstruction → reconstruct resonance mass

- Disadvantages:
 - Many different final states → lots of work
 - Resolution suffers in final states with neutrinos
What are we looking for?

Extra Dimensions:
- RS1: traditional benchmark, small BR to VV
- Bulk G: localize SM particles in 5th dim (bulk)
- Bulk G: large BR to tt, V_LV_L and HH
- Radion → HH

New strong Sector:
- Technicolor
- Little Higgs
- Partial compositeness
- …

More Ideas Welcome
Want to have your model excluded (or found!)?
Talk to us!
All leptonic final states

- Look for:
 - $Z \rightarrow ee/\mu\mu$,
 - $Z \rightarrow \nu\nu$,
 - $W \rightarrow e\nu/\mu\nu$

- Advantages:
 - Low backgrounds, high purity
 - Kinematic resolution for $ZZ \rightarrow 4l$

- Disadvantages:
 - Low branching fraction
 - Kinematic reconstruction with more than one neutrino
WZ → llν

- All leptonic final state
 - Only one ν → decent mass resolution
 - very pure
 - Very low BR (~ 1.5%)

- Analysis strategy
 - Select three leptons
 - Compute \(M_{WZ} \) from MET and W mass constraint
 - Search for bump in \(M_{WZ} \) spectrum
WZ → ℓℓν limits

- Interpret limits in terms of
 - Sequential SM W'
 - Heavy vector triplet (weakly coupled resonance and composite Higgs)
 - Technicolor

π_{TC} and ρ_{TC} masses and BR related
WW → 2l2ν

- Compared to WZ:
 - Two ν → poor mass resolution
 - Only two leptons → increased background

- Strategy:
 - Select two leptons (Z veto!)
 - B-veto suppresses top
 - Requite MET
 - Study transverse mass of llMET system

- Sensitive to many neutral resonances:
 - RS and bulk Graviton used as benchmark
 - Can be reinterpreted as other narrow resonances
Hadronic Decays

- Look for:
 - Semi-leptonic
 - Fully hadronic

- Advantages:
 - Decent kinematic resolution
 - High branching fractions
 - Access to $H \rightarrow bb$

- Disadvantages:
 - Giant backgrounds
 - Somewhat less at very high masses
ZZ→2l2q

- **Reconstruct leptonic Z**
 - The easy part
 - Two leptons, opposite sign, same flavor
 - Compatible with Z mass

- **Reconstruct Hadronic Z**
 - Tricky: high p_t Z reconstructed as single jet (“merged”)
 - Analyze 2 categories
 → dijet with Z mass
 → single massive jet

\[\Delta R_{qq} \approx 2 \frac{M_Z}{p_{t,Z}} \]

\[\Delta R > \text{jet radius} \]

\[\Delta R < \text{jet radius} \]
ZZ→2l2q

- Background estimated from \(M_{jj/j} \) sidebands

- Most serious syst. Uncertainty from background estimate

- Two \(~\)independent results for dijet and monojet → joint at point of equal exclusion power
Jet sub-structure

- Recluster jet constituents, applying additional conditions at each recombination
 \[z = \frac{\min(p_{T,i},p_{T,j})}{p_{T,jet}} > 0.1 \]
 \[\Delta R < 0.5 \frac{M_{jet}}{p_{T,jet}} \]
- Filter out soft and large angle QCD emissions

Mass Drop (arXiv:0802.2470)
- de-cluster jet by stopping jet algo before last iteration
- \(\rightarrow \) two subjets
- jet is V-tagged if its mass drop \(\mu_D \) < (analysis dependent) cut value
 \[\mu_D = \frac{M_1}{M_{jet}} \]

N-subjettiness (arXiv:1011.2268)
- Topological compatibility with hyp of N subjets
- Rescluster jet, halting when N subjets reached
- \(\tau_N : p_T \)-weighted sum over jet constituents of distances from closest subjet axis
 \[\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \cdot \min(\Delta R_{1,k},\Delta R_{2,k}, \ldots, \Delta R_{N,k}) \]

These are NOT THE ONLY POSSIBILITIES ! Plenty of alternatives available
check CMS EXO-13-006
Control Measurements

- Jet-substructure dependent on hadronization models
 - Depends on MC program
 - Decently but not perfectly modeled

- Get Control measurement from data
 - Select semileptonic \(t\bar{t}b\bar{t} \) events
 - Lepton, MET, bjet
 - Look at opposite hemisphere → high chance for W from t decay
 - Similar to “Tag & Probe” technique

- Extract & Apply correction factors
 - Still about 10% uncertainty
 - Application to Z justified by MC
Semileptonic with Substructure

- High p_t lepton reco from Z' searches
- Standard CMS W reconstruction
- Special treatment for leptons in Z
 - At high boosts, leptons in each others isolation cones → subtract!
- Only merged category
 - Using CA8 jets to catch lower p_t W/Z
 - Jet pruning
 - N-subjettiness
- Backgrounds
 - Z+jets for Z channel
 - Also top, WW in W channel
 - Estimate from M_j sideband
Analysis well synchronized
- Identical hadronic V treatment
- Will allow easy combination for improved limit / exclusion range
VV all hadronic

- No leptons, only jets
- Reduce large backgrounds with substructure variables
- Somewhat compensated by large signal branching ratio
- Trigger thresholds quite high

Analysis Flow:
- Select two CA8 jets
- Apply jet-substructure selection
- Scan M_{jj} (smoothness test, MC free)

Results:
- Many possible final states implicit (WW/WZ/WZ)
 \rightarrow many possible signals (W', Graviton…)

[CMS EXO-12-024]
VV all hadronic

Jet resolution + efficiency depends on V flavor (W vs Z) and polarization

→ need to check different signal hypothesis separately, even if data remains the same
HH→4b

- All hadronic
 - Use btags to suppress QCD background
 - M_{jj} to define signal and control regions

- Selection
 - 4 b-jets, $p_t > 40$ GeV, $|\eta| < 2.5$
 - 2 dijets with $\Delta R < 1.5$, $p_{t,dijet} > 200$ GeV
 - Top veto
 - Signal region in M_{jj}

[Atlas-Conf-2014-005]
HH→4b results

- Background
 - Multijet dominates
 - Use fewer btag samples
 - Use M_{jj} control regions

- Systematic uncertainties dominated by btag

- Competitive limits on RS Graviton
 - Losing sensitivity to jet merging at high mass
Outlook: We are not done yet

- **Subjet b-tag**
 - Especially suitable for H
 - Huge reduction in background

- **Explore more final states**
 - VH of additional interest
 - Currently not all W/Z final states covered
 - Limit by manpower

- **Combine different channels**
 - More powerful limits
 - Increases model dependence
 - Requires coordination between analysis groups
Conclusion

- Searches for new physics in diboson push to higher masses
 - Low signal cross section → hadronic final states gain importance
 - developing new techniques to deal with high boosts

- No WW/ZZ/WZ resonance seen
 - SM still standing strong
 - Exclusion limits stronger than ever
 - Many final states probed, but some missing

- Expect more results in Run II
 - Greatly increased reach at 13 TeV
 - Jet-substructure may become more important